

Field Sampling Plan Addendum

Remedial Investigation/Feasibility Study

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas EPA Identification No. TXD086278058

Remedial Action Contract 2 Full Service Contract: EP-W-06-004 Task Order: 0088-RICO-06MC

Prepared for

U.S. Environmental Protection Agency Region 6 1445 Ross Avenue Dallas, Texas 75202-2733

Prepared by

EA Engineering, Science, and Technology, Inc. 405 S. Highway 121 Building C, Suite 100 Lewisville, Texas 75067 (972) 315-3922

> August 2013 Revision: 00 EA Project No. 14342.88

Field Sampling Plan Addendum

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas EPA Identification No. TXD086278058

Remedial Action Contract 2 Full Service Contract: EP-W-06-004 Task Order: 0088-RICO-06MC

Jim Stars

Tim Startz, PMP
Date

EA Program Manager

Naux Clautor

David S. Santoro, P.E., L.S.
EA Quality Assurance Officer

Brian Mueller Date

U.S. Environmental Protection Agency Region 6 Task Order Monitor

August 2013

LIST OF FIGURES

<u>Number</u>		<u>Title</u>
1	Site Map	
2	AOC-1 Sample Locations	
3	AOC-2 Sample Locations	
4	AOC-3 Sample Locations	
5	AOC-4 Sample Locations	
6	AOC-5 Sample Locations	
7	AOC-6 Sample Locations	
8	AOC-7 Sample Locations	
9	Background Sample Location	ns

LIST OF ACRONYMS AND ABBREVIATIONS

AOC Area of Concern

Acid Volatile Sulfides/Simultaneously Extracted Metals AVS/SEM

COPC Contaminant of potential concern

CSM Conceptual Site Model

EA EA Engineering, Science, and Technology, Inc.

U.S. Environmental Protection Agency **EPA**

ERA Ecological risk assessment

FS Feasibility Study **FSP** Field Sampling Plan

Human health risk assessment **HHRA**

Natural Resource Damage Assessment NRDA

PCB Polychlorinated biphenyl **RAC** Remedial Action Contract RΙ Remedial Investigation

Falcon Refinery Superfund Site site **SVOC** Semi-volatile organic compound

TGLO Texas General Land Office

TPWD Texas Parks and Wildlife Department

USFWS U.S. Fish and Wildlife Service Volatile organic compound VOC

DISTRIBUTION LIST

U.S. Environmental Protection Agency

Name: Michael Pheeny

Title: EPA Region 6 Contracting Officer (Letter Only)

Name: Rena McClurg

Title: EPA Region 6 Project Officer (Letter Only)

Name: Brian Mueller

Title: EPA Region 6 Task Order Monitor

Name: Anna Milburn

Title: EPA Region 6 Ecological Risk Assessor

Name: Kenneth Shewmake

Title: EPA Region 6 Ecological Risk Assessor

Texas Commission on Environmental Quality

Name: Phillip Winsor Title: Project Manager

Name: Vickie Reat

Title: Ecological Risk Assessor

Other State/Federal Natural Resource Trustees

Name: Jessica White

Title: National Oceanic and Atmospheric Association, Regional Resource

Coordinator, Region 6

Name: Clare Lee

Title: U.S. Fish and Wildlife Services (USFWS) Contaminant Biologist

Name: Barry Forsythe

Title: USFWS

Name: Ron Brinkley

Title: USFWS Contaminant Biologist

Name: Don Pitts

Title: Texas Parks and Wildlife Department (TPWD) Program Director

EA Project No.: 14342.88

Revision: 00

List of Acronyms and Abbreviations, Page 2 of 2

EA Engineering, Science, and Technology, Inc.

August 2013

Name: Andy Tirpak

Title: TPWD Natural Resource Damage Assessment (NRDA) Trustee

Name: Jane Sarosdy

Title: Texas General Land Office (TGLO) Director, NRDA Trustee

Name: Tommy Mobley

Title: TGLO Technical Program Manager

EA Engineering, Science, and Technology, Inc.

Name: Tim Startz

Title: Program Manager (Letter Only Via E-mail)

Name: Robert Owens Title: Project Manager

Name: File

Title: EA Document Control File

1. PROJECT DESCRIPTION AND OBJECTIVES

EA Engineering, Science, and Technology, Inc. (EA) has been authorized by the U.S. Environmental Protection Agency (EPA), under Remedial Action Contract (RAC) Number EP-W-06-004, Task Order 0088-RICO-06MC, to conduct a Remedial Investigation/Feasibility Study (RI/FS) at the Falcon Refinery Superfund Site (site). EA has prepared this Field Sampling Plan (FSP) Addendum to address the changes to the original FSP submitted to the EPA on 4 February 2012. These changes have been made in accordance with specification provided in the Field Change Form No. 01 and the Technical Exchange Meeting held on 2 May 2013. Appendix A of the FSP has not changed. The sampling design matrix for investigative samples in Appendix B of the FSP has been updated and is included in this FSP Addendum. All the figures in the FSP have been updated and are included in this FSP Addendum. The sections of the original FSP that have changed are discussed below. The section numbers correspond to the section numbers in the original FSP.

1.3 PROJECT OBJECTIVES

The key components for the RI/FS have been changed as noted below:

• Soil Sampling

- Onsite and offsite surface and subsurface soil sampling (up to 195 samples) will be collected from surface soil and from subsurface soil from borings installed to approximate depths to 15 feet below ground surface to assess presence of contaminants of potential concern (COPCs) of high toxicity and/or high mobility, define the nature and extent, characterize waste to allow for a disposal option evaluation in the FS, evaluate whether COPCs are migrating offsite, and develop data to be used in the Ecological Risk Assessment (ERA) and Human Health Risk Assessment (HHRA).
- Surface and subsurface soil samples will be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals. Soil samples will also be analyzed for total organic carbon.
- Two surface soil samples in Area of Concern (AOC) 3 will be analyzed for tributyltin compounds.
- Background soil samples will only be analyzed for metals.
- Soil samples taken above and below the water table from monitoring well borings will be also be analyzed for particle size, fraction of organic carbon, moisture content, specific gravity, wet sieve, and/or Atterberg limits.

Ground Water Sampling

- Onsite (up to 17 samples) and offsite (up to 10 samples) ground water samples will be collected from permanent and temporary monitoring wells to determine the nature and extent of ground water COPCs. Permanent and temporary monitor well data will be used in the HHRA and ERA. Data collected during the onsite ground water investigation will also be used to update the pathway and receptor analysis presented in the conceptual site model (CSM), if necessary.
- Onsite ground water samples will be analyzed for VOCs, SVOCs, and total and dissolved metals.
- Offsite (background) ground water samples will only be analyzed for metals. Filtered samples will be collected for metals analyses, in addition to unfiltered ones.

• Surface Water and Sediment Sampling

- Onsite wetlands, intracoastal, and offsite background surface water (up to 33 samples) and sediment (up to 30 samples) investigations will be performed to define the nature and extent of COPCs, provide data to be used in the HHRA and ERA, and to update the pathway and receptor analysis presented in the CSMs, if necessary.
- Onsite sediment and surface water samples will be analyzed for VOCs, SVOCs, and total and dissolved metals.
- Surface water samples will also be analyzed for total suspended solids. Sediment samples will also be analyzed for acid volatile sulfides/simultaneously extracted metals (AVS/SEM).
- Offsite sediment and surface water samples will be analyzed for SVOCs and metals.
 Filtered samples will be collected for metals analyses, in addition to unfiltered ones for surface water.

• Ecological Characterization

- An ecological characterization may be conducted if the previous ecological characterization is not of the quality needed for this RI/FS.
- Up to 16 fish tissue samples will be collected and analyzed based on the results of the Screening Level Ecological Risk Assessment. Samples will be analyzed for parameters as directed by EPA, but will likely include lipids, metals, and SVOCs.

2. METHODOLOGY

2.1 SAMPLE COLLECTION

2.1.1 Sediment Sampling for AVS/SEM

Sampling for AVS/SEM analysis for sediment samples will require minimal disturbance of the sediment. The sediment samples collected for this analysis should not be homogenized. The undisturbed sediment should be placed in the sample container leaving minimum headspace.

2.3 SAMPLE CONTAINER, VOLUME, PRESERVATION, AND HOLDING TIME REQUIREMENTS

Samples are not being analyzed for polychlorinated biphenyl (PCB), PCB congeners, and herbicides and pesticides. Therefore, Table 4 of the original FSP has been modified as follows.

TABLE 4 REQUIRED VOLUME, CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

Parameter	Method	Volume and Container	Preservatives	Holding Time ^a
Investigative Soli	d Samples			
Metals (including mercury)	CLP ISM01.3	One 8-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	180 days (28 days for mercury)
VOCs	CLP SOM01.2	Three 5-gram EnCore samplers and One 4-ounce glass jar with Teflon TM -lined cap	Store at 4 <u>+</u> 2°C	48 hours
SVOCs	CLP SOM01.2	One 8-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	14 days
AVS/SEM	EPA-121-R91-100	One 4-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	14 days
Tributyltin Compounds	GC-FPD	One 4-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	14 days
TOC	EPA Method 9060	One 8-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	28 days
Lipids (Fish Tissue)	Modified Bligh Dyer Method or an approved laboratory standard operating procedure.	One 4-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	14 days
SVOCs (Fish Tissue)	SW-846 Method 8270C	One 4-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	14 days
Metals (Fish Tissue)	SW-846 Method 6020 and 7471 (Mercury)	One 4-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	180 days (28 days for mercury)
Moisture Content, Bulk Density, Particle	ASTM D2216, ASTM D7263, ASTM D422, ASTM D854/C127,	3-inch diameter Shelby Tube, at least 18 inches long, capped and taped with no headspace.	None	None

Parameter	Method	Volume and Container	Preservatives	Holding Time a
Size (wet), Specific Gravity, Atterberg Limits	ASTM D4318			
Fraction Organic Carbon	Walkley-Black	One 8-ounce amber glass jar with Teflon TM -lined cap	Store at 4±2°C	28 days
Investigative Wat	er Samples		_	
Metals	CLP ISM01.3	One 1-liter HDPE bottle	Nitric acid to	180 days
(including			$Ph \leq 2;$	(28 days for
mercury)			Store at 4±2°C	mercury)
VOCs	CLP SOM01.2	Three 40-milliliter amber volatile organic analyte (VOA) glass vials with Teflon TM -lined cap	Hydrochloric acid to Ph<2; Store at 4±2°C	14 days
SVOCs	CLP SOM01.2	Two 1-liter amber glass bottles	Store at 4±2°C	7 days
TSS	SM 2540 D	One 1-liter HDPE bottle	Store at 4±2°C	7 days
Investigative Soil	Vapor Samples		1	•
VOCs	EPA Method TO-15	6-liter Summa canister	None	28 days
IDW Special Ana	lysis			
Reactivity Corrosivity Ignitability	SW-846 Method 9045C or 9040B, Method 1030, and Chapter 7	One 8-ounce amber glass jar with Teflon TM -lined cap (solid) or one 500-milliliter HDPE bottle (water/sludge)	Store at ≤6°C	NA/72 hours
TCLP metals	SW-846	One 8-ounce amber glass jar with	Store at <6°C	180 days (28
(including mercury)	Methods 1311/6020/6010B/747	Teflon TM -lined cap (solid) or one 1-liter glass bottle (water/sludge)	_	days for mercury)
TCLP VOCs	0A SW-846 Methods 1311/8260B	One 4-ounce amber glass jar with Teflon TM -lined cap (solid) or Three 40-milliliter amber VOA glass vials with Teflon TM -lined cap (water/sludge)	Store at 4±2°C	14 days
TCLP SVOCs	SW-846 Methods 1311//8270C	One 8-ounce amber glass jar with Teflon TM -lined cap (solid) or one 1-liter glass bottle (water)	Store at 4±2°C	14 days

NOTE:

a Holding time is measured from the time of sample collection to the time of sample extraction and/or analysis.

ASTM = American Society for Testing and Materials

°C = degrees Celsius

CLP = Contract Laboratory Program

GC-FPD = Gas Chromatography – Flame Photometric Detector

HDPE = high-density polyethylene

NA = Not applicable

SVOC = Semi-volatile organic compound

TAL = Target Analyte List

TBD = To be determined

TCLP = Toxicity Characteristic Leaching Procedure

TOC = Total organic carbon

TSS = Total suspended solids

VOA = Volatile organic analyte

VOC = Volatile organic compound

3. FIELD IMPLEMENTATION

3.1 AOC-1

Figure 2 identifies the updated soil and ground water sample locations for AOC-1. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.2 AOC-2

Figure 3 identifies the updated soil and ground water sample locations for AOC-2. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.3 AOC-3

Figure 4 identifies the updated soil and surface water sample locations for AOC-3. Sediment samples will not be taken in AOC-3. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.4 AOC-4

Figure 5 identifies the updated soil and ground water sample locations for AOC-4. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.5 AOC-5

Figure 6 identifies the updated sediment and surface water sample locations for AOC-5. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

Fish samples will be collected from the intracoastal waterway if specified for sampling and analysis. Whole fish and fish fillet samples will be collected and prepared for laboratory analysis submittal. Fish tissue will be analyzed for lipids, SVOCs, and metals.

3.6 AOC-6

Figure 7 identifies the updated soil sample locations for AOC-6. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.7 AOC-7

Figure 8 identifies the updated soil sample locations for AOC-7. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

3.8 BACKGROUND LOCATIONS

Figure 9 identifies the updated background soil, sediment, surface water, and ground water sample locations. The sample design matrix in Appendix B has been updated to identify the number of samples that will be taken and the analyses that will be performed.

Figure 1 Site Map Field Sampling Plan

R STATE BENTEE

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas

Figure 3 AOC-2 Sample Locations Field Sampling Plan

R R RIVER STATES

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas

Figure 4
AOC-3 Sample Locations
Field Sampling Plan

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas

Figure 5
AOC-4 Sample Locations
Field Sampling Plan

R STATES

Falcon Refinery Superfund Site Ingleside, San Patricio County, Texas

Figure 7
AOC-6 Sample Locations
Field Sampling Plan

Appendix B Sample Design Matrix

Appendix B

SAMPLING DESIGN MATRIX FALCON REFINERY SUPERFUND SITE INGLESIDE, TEXAS

	ANALYSES																	
SAMPLING AREA	SAMPLE METHOD	Judgmental or Random	SAMPLE INTERVAL (feet bgs)	FIELD SCREENING	SAMPLE COLLECTION DESCRIPTION/ FREQUENCY	TCL VOC	TCL SVOC	TAL METALS	Dissolved Metals	AVS/SEM	тос	TSS	Tributyltin	Permeability Sampling*	Lipids	PCBs	PCBs Congeners	Herbicides and Pesticides
SOIL SAMPLES	- SURFACE AND SUBSE	RUFACE																
	Г			ı	DIRECT P													
AOC-1N		ludamental	0 to 0.5			8	8	8	0	0	8	0	0	0	0	0	0	0
AUC-IN		Judgmental	0.5 to 2 2 to top of water table			8	8	8	0	0	8	0	0	0	0	0	0	0
			0 to 0.5	ł		12	12	12	0	0	12	0	0	0	0	0	0	0
AOC-1S		Judgmental	0.5 to 2			12	12	12	0	0	12	0	0	0	0	0	0	0
		-	2 to top of water table			12	12	12	0	0	12	0	0	0	0	0	0	0
			0 to 0.5	1		6	6	6	0	0	6	0	0	0	0	0	0	0
AOC-2		Judgmental	0.5 to 2			6	6	6	0	0	6	0	0	0	0	0	0	0
			2 to top of water table			6	6	6	0	0	6	0	0	0	0	0	0	0
			0 to 0.5	1	VOCs - collect grab sample	3	3	3	0	0	3	0	0	0	0	0	0	0
AOC-3		Random	0.5 to 2		from 0 to 0.5 feet and 0.5 to 2 feet. From 2 feet to top of	3	3	3	0	0	3	0	0	0	0	0	0	0
	Direct Push -		2 to top of water table	Continuous screening with	water table collect sample	3	3	3	0	0	3	0	0	0	0	0	0	0
	Continuous Sampling with Acetate Liner		0 to 0.5	FID/PID at 2-foot intervals from surface to total depth	from interval with highest PID measurement.	5	5	5	0	0	5	0	0	0	0	0	0	0
AOC-4	With Acetate Lines	Judgmental	0.5 to 2	mom surface to total depth	For all other analysis	5	5	5	0	0	5	0	0	0	0	0	0	0
			2 to top of water table		homogenize sample interval and collect sample.	5	5	5	0	0	5	0	0	0	0	0	0	0
			0 to 0.5]		2	2	2	0	0	2	0	0	0	0	0	0	0
AOC-6		Judgmental	0.5 to 2			2	2	2	0	0	2	0	0	0	0	0	0	0
			2 to top of water table			2	2	2	0	0	2	0	0	0	0	0	0	0
			0 to 0.5			2	2	2	0	0	2	0	0	0	0	0	0	0
AOC-7		Judgmental Judgmental	0.5 to 2			2	2	2	0	0	2	0	0	0	0	0	0	0
			2 to top of water table			2	2	2	0	0	2	0	0	0	0	0	0	0
			0 to 0.5			0	0	10	0	0	0	0	0	0	0	0	0	0
Background			0.5 to 2			0	0	10	0	0	0	0	0	0	0	0	0	0
			2 to top of water table			0	0	10	0	0	0	0	0	0	0	0	0	0
TOTAL DIRECT	PUSH BORING SOIL SA	MPLES			MONITORING	114	114	144	0	0	114	0	0	0	0	0	0	0
			040.05	l	WONITORING	5	5	5	0	0	5	0	0	0	0	0	0	0
			0 to 0.5 0.5 to 2			5	5	5	0	0	5	0	0	0	0	0	0	0
AOC-1N		Judgmental	2 to top of water table			5	5	5	0	0	5	0	0	5	5	0	0	0
			Below Water Table			0	0	0	0	0	0	0	0	5	5	0	0	0
	<u> </u>		0 to 0.5	ł		7	7	7	0	0	7	0	0	0	0	0	0	0
			0.5 to 2			7	7	7	0	0	7	0	0	0	0	0	0	0
AOC-1S		Judgmental	2 to top of water table			7	7	7	0	0	7	0	0	7	7	0	0	0
			Below Water Table		VOCs - collect grab sample	0	0	0	0	0	0	0	0	7	7	0	0	0
	Hollow Stem Auger		0 to 0.5	ł	from 0 to 0.5 feet and 0.5 to 2 feet. From 2 feet to top of	1	1	1	0	0	1	0	0	0	0	0	0	0
	Continuous sampling		0.5 to 2	Continuous screening with	water table collect sample	1	1	1	0	0	1	0	0	0	0	0	0	0
AOC-2	with split spoon or continuous sampling	Judgmental	2 to top of water table	 FID/PID at 2-foot intervals from surface to total depth 	from interval with highest PID measurement.	1	1	1	0	0	1	0	0	1	1	0	0	0
	device		Below Water Table	from surface to total depth	For all other analysis	0	0	0	0	0	0	0	0	1	1	0	0	0
			0 to 0.5	Í	homogenize sample interva	3	3	3	0	0	3	0	2	0	0	0	0	0
			0.5 to 2		and collect sample.	3	3	3	0	0	3	0	0	0	0	0	0	0
AOC-3		Judgmental	2 to top of water table			3	3	3	0	0	3	0	0	3	3	0	0	0
			Below Water Table	1		0	0	0	0	0	0	0	0	3	3	0	0	0
			0 to 0.5	Í		1	1	1	0	0	1	0	0	0	0	0	0	0
			0.5 to 2	1		1	1	1	0	0	1	0	0	0	0	0	0	0
AOC-4		Judgmental	2 to top of water table	1		1	1	1	0	0	1	0	0	1	1	0	0	0
			Below Water Table	1	<u> </u>	0	0	0	0	0	0	0	0	1	1	0	0	0
TOTAL MONITO	RING WELL BORING SC	OIL SAMPLES				51	51	51	0	0	51	0	2	34	34	0	0	0
	CE AND SUBSURFACE S	OII SAMDIES				165	165	195	0	0	165	0	2	34	34	0	0	0

Appendix B

SAMPLING DESIGN MATRIX FALCON REFINERY SUPERFUND SITE INGLESIDE, TEXAS

Septembox Sept																						
Substitution Process Substitution Process Substitution Process									ANALYSES													
March Control Contro		SAMPLE METHOD			FIELD SCREENING	DESCRIPTION/ FREQUENCY	voc	svoc	METALS	Metals	AVS/SEM	тос	TSS	Tributyltin		Lipids	PCBs		Herbicides and Pesticides			
Company of Company o						QC FOR SURFACE AND S																
Commany control Version Versio						As stated above for each													_			
March Marc	QC MS/MD {1/2	U inorganics}				designated sample location													_			
State Stat					Not Applicable	1 per VOC cooler																
Proceedings 1997					1	1 per day per nondedicated																
The Content	TOTAL QC					очирноги	31	31	31	0	0	20	0	1	0	0	0	0	0			
The content is a content of the co		MPLES INCLUDING QC	- SOLID SAMPLES																			
According Application Company	TOTAL WATER	QC SAMPLES ASSOCIA	TE WITH SOIL SAMPL	LES						0	0			0				0	0			
## Design of Des	SEDIMENT SAM	IPLES																				
Accordance Control Description Descrip	AOC-3		Judgmental	0 to 0.5		Orah Oranata	0	0	0	0	0	0	0	0	0	0	0	0	0			
Designation Province Sections Company Device De	AOC-5		Judgmental	0 to 0.5		Grab Samples	10	10	10	0	10	10	0	0	0	0	0	0	0			
Co. SMSD (1/20 agraphics) Vertical	Background	Ponar/Sediment Coring	Judgmental	0 to 0.5	Not Applicable	collected from marine/coastal and 10 from	0	20	20	0	0	0	0	0	0	0	0	0	0			
CC 4604/GD (1/20 agraphed) Verticate Verti	TOTAL SEDIME	NT SAMPLES		l.			10	30	30	0	10	10	0	0	0	0	0	0	0			
Commonweigness Vertical Vertical Vertical Vertical Vertica						QC FOR SEDI																
Scription Continue	QC MS/MSD {1/	20 organics}	Various	Various		As stated above for each	2		N/A	0	N/A		0					0	0			
20 Belle (planel) Various Va									_	_	1								_			
Complement (where sample)					Not Applicable	-	-				1											
ACC Company	QC trip blank (w	ater sample)	N/A	N/A	- ''		5	N/A	N/A	0	N/A	N/A	0	N/A	N/A	N/A	0	0	0			
TOTAL COLOR	QC equipment rir	nsate (water sample)	N/A	N/A			N/A	5	5	0	N/A	N/A	0	N/A	N/A	N/A	0	0	0			
15 35 35 0 12 13 0 0 0 0 0 0 0 0 0	TOTAL QC					очирноги		5	5	-								0	ŏ			
State Stat		NT SAMPLES INCLUDIN	IG QC - SOLID SAMPL	ES					35									0				
Random Not Applicable Judgmental Not Applicable Judgmental Not Applicable Service Judgmental Not Applicable Not															0							
AOC-3 AOC-4 AOC-5 Dispossible Dipper Judgmental Not Applicable Judgmental Not Applicable Not Applicable Judgmental Not Applicable Judgmental Not Applicable Not Applicable AOC-6 Background Not Applicable No	SURFACE WAT	ER SAMPLES									•			•	•							
ACC-6 Dispossible Dispossi	AOC-3		Random	Not Applicable			3	3	3	3	0	0	3	0	0	0	0	0	0			
Background Judgmental Not Applicable Not Applicable Oracle Orac			Judgmental	Not Applicable		Grab Samples	0	0	0	0	0	0	0	0	0	0	0	0	0			
Background Judgmental Not Applicable Mot Applicab	AOC-5	Disposable Dipper	Judgmental	Not Applicable			10	10	10	10	0	0	10	0	0	0	0	0	0			
OC FOR SURFACE WATER SAMPLES OC FOR SURFACE WATER SAMPLES	-		Judgmental	Not Applicable		collected from marine/coastal and 10 from	0	20	20	20	0	0	0	0	0	0	0	0	0			
As stated above for each designated sample location As stated above for each designated sample loc	TOTAL SURFAC	E WATER SAMPLES								33	0	0	13	0	0	0	0	0	0			
As stated above for each content of the content o						QC FOR SURFAC	E WAT															
Octobe Part						As stated above for each	2				-			-				0				
December N/A						designated sample location			_													
The day per nondedicated equipment insate N/A N/	QC trip blank	()			Not Applicable	1 per VOC cooler	3	N/A	N/A	N/A			N/A									
Equipment finisate			N/A	NI/A																		
ACC-IN A		nsate	IN/A	N/A		equipment			N/A		-							_	-			
ACC-1N ACC-1S A														_		-		_				
AOC-1N AOC-2			CLUDING QC				22	39	39	39	0	0	17	0	0	0	0	0	0			
AOC-3		N SAMPLES		I			-	-	-	-	_		0		^	_		0	_			
AOC-2 AOC-3 AOC-4 AOC-4 AOC-4 Background AOC-5 Background AOC-5 AO				1																		
AOC-3 Live Flow Saffiping AOC-3 Live Flow Saffiping AOC-3 AOC-4 AO											_	-			-				_			
ACC-4 Background 1		Low Flow Sampling	Judgmental	Not Applicable	Not Applicable	Grab Sample																
17 17 27 27 0 0 0 0 0 0 0 0 0	AOC-4			Ì			1	1	1	1	0	0	0		0	0	0					
As stated above for each designated sample location Various				<u> </u>	<u> </u>			_			-											
As stated above for each designated sample location Not Applicable Not	TOTAL GROUN	D WATER SAMPLES				27	0	0	0	0	0	0	0	0	0							
As stated above for each designated sample location N/A vi/A vi/A vi/A vi/A vi/A vi/A vi/A vi				T		QC FOR GROUNI	D WATE			1	1					1						
DC MS/MD (1/20 Inorganics) Various Vari					4	As stated above for each	2	_														
AC field duplicate (1/10)		,			4																	
Terr VoC cooler 3 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0 0		e {1/10}			Not Applicable		_															
OC equipment insate equipment N/A 5 5 5 5 0 0 0 N/A N/A N/A 0 0 0 0 TOTAL QD 8 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0	QC trip blank		N/A	N/A	4		3	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0			
		QC equipment rinsate equipment						5									0					
TOTAL GROUND WATER SAMPLES INCLUDING QC 25 27 37 37 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL QD							10		10	0	0	0	0	0	0	0	0	0			
	TOTAL GROUN	D WATER SAMPLES INC	CLUDING QC				25	27	37	37	0	0	0	0	0	0	0	0	0			

Appendix B

SAMPLING DESIGN MATRIX FALCON REFINERY SUPERFUND SITE INGLESIDE, TEXAS

						ANALYSES												
						ANALISES												
					SAMPLE COLLECTION													Herbicides
SAMPLING		Judgmental or	SAMPLE INTERVAL		DESCRIPTION/	TCL	TCL	TAL	Dissolved					Permeability			PCBs	and
AREA	SAMPLE METHOD	Random	(feet bgs)	FIELD SCREENING	FREQUENCY	voc	svoc	METALS	Metals	AVS/SEM	TOC	TSS	Tributyltin	Sampling*	Lipids	PCBs	Congeners	Pesticides
SOIL VAPOR S	AMPLES						•											
AOC-1N						5	0	0	0	0	0	0	0	0	0	0	0	0
AOC-1S	1					7	0	0	0	0	0	0	0	0	0	0	0	0
AOC-2	Low Flow Sampling	Judgmental	Not Applicable	Not Applicable	Grab Sample	1	0	0	0	0	0	0	0	0	0	0	0	0
AOC-3	Low How Gampling	oddymental	140t Applicable	Not Applicable	Grab Gample	3	0	0	0	0	0	0	0	0	0	0	0	0
AOC-4						1	0	0	0	0	0	0	0	0	0	0	0	0
Background						10	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL SOIL VA	APOR SAMPLES					27	0	0	0	0	0	0	0	0	0	0	0	0
					QC FOR SOIL	VAPOR	SAMPLE	S										
QC MS/MSD (1	/20 organics}	Various	Various		As stated above for each	2	N/A	N/A	N/A	0	0	0	0	N/A	N/A	0	0	0
QC MS/MD (1/2	20 inorganics)	Various	Various		designated sample location	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0
QC field duplicat	te {1/10}	Various	Various	Not Applicable	designated sample location	3	N/A	N/A	N/A	0	0	0	0	N/A	N/A	0	0	0
QC trip blank		N/A	N/A	Not Applicable	1 per VOC cooler	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0
		ALIA	NI/A		1 per day per nondedicated													
QC equipment ri	insate	N/A	N/A		equipment	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0
TOTAL QD						5	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL SOIL VA	APOR SAMPLES INCLUI	DING QC				32	0	0	0	0	0	0	0	0	0	0	0	0
FISH TISSUE																		
Intracoastal						0	16	16	0	0	0	0	0	0	16	0	0	0
Waterway	Fillet or Whole	N/A	N/A	Not Applicable	Not Applicable	U			U	Ü	U	U	Ü	U	10	U	U	U
TOTAL FISH TIS	SSUE SAMPLES					0	16	16	0	0	0	0	0	0	16	0	0	0
					QC FOR FISH	TISSUE	SAMPLE	S										
QC MS/MSD (1	/20 organics}	Various	Various		As stated above for each	N/A	1	N/A	N/A	0	0	0	0	N/A	N/A	0	0	0
QC MS/MD (1/2	20 inorganics}	Various	Various		As stated above for each designated sample location	N/A	N/A	1	N/A	0	0	0	N/A	N/A	N/A	0	0	0
QC field duplicat	te {1/10}	Various	Various	Not Applicable	designated sample location	N/A	N/A	N/A	N/A	0	0	0	0	N/A	N/A	0	0	0
QC trip blank		N/A	N/A	Not Applicable	1 per VOC cooler	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0
					1 per day per nondedicated													
QC equipment ri	insate	N/A	N/A		equipment	N/A	N/A	N/A	N/A	0	0	0	N/A	N/A	N/A	0	0	0
TOTAL QD						0	1	1	0	0	0	0	0	0	0	0	0	0
TOTAL FISH TIS	TOTAL FISH TISSUE SAMPLES INCLUDING QC								0	0	0	0	0	0	16	0	0	0
* Permeability sa	ampling includes analysis	for particle size, fraction	organic carbon, moisture conte	ent, specific gravity, wet sieve	e, and or Atterberg limits.													
						PID	Photo-io	nization Detec	ctor									
AOC Area of Concern								rinated Bipher	nyls									
AVS/SEM	acid volatile sulfides/sim	QC	Quality (
bgs	below ground surface Flame Ionization Detector			atile Organic	Compound													
FID			nalyte List															
MD	Matrix Duplicate			ompound List														
MS	Matrix Spike			ganic Carbon														
MSD	Matrix Spike Duplicate							spended Solid Organic Comp										
N/A/ Not Applicable VOC									oouna									